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ABSTRACT 

. 
A. Carvajal-Rodríguez, GASP: a new Genetic Algorithm (based on) Surviving 
Probability. Online Journal of Bioinformatics 5:23-31, 2004. A new basic genetic 
algorithm, called GASP (Genetic Algorithm Surviving Probability) is described. The algorithm 
differs in some essential properties compared to other genetic algorithms (GA’s) and is 
more accurate than traditional GA’s in solving some general problems. In GASP the 
evolutionary working principle is based in a selection scheme called absolute selection. 
Effect of the absolute selection mode is analysed and GASP is compared with the well-
known Simple Genetic Algorithm (SGA) via three examples. The third example is a rather 
novel application of GAs on a biological problem related with in progress research in 
conservation genetics. Results show that GASP achieves higher accuracy on reaching the 
optimum in the three example problems and is faster than SGA. Data sets, source code and 
the biological model used in example 3 are available as supplementary information from 
http://webs.uvigo.es/c03/webc03/XENETICA/XB2/antonio/GASP/GASP.htm It is proposed 
that GASP-based GAs may represent a powerful new kind of GAs for the exploration of 
many interesting biological problems. 
  
KEY WORDS: Genetic Algorithm, schema theorem, computer simulations in conservation 
biology problems 
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INTRODUCTION 
A Genetic Algorithm (GA) is a solving problem method that derives its behaviour by analogy 
to evolution in nature. Briefly, this means that the problem solutions are encoded as a 
population of individuals. Each individual is a solution and has different “genes” which 
represent different parameters of the problem. Individuals can undergo mutation and 
recombination in these “genes”. Each individual has a fitness value that depends on how 
well the individual performs with respect to the problem to solve. Therefore, the offspring 
number with which one individual contributes to the next generation depends on its fitness 
value. Through the process of finding the optimal solution, the population will evolve during 
a number of generations or until a maximum or average fitness is reached. More detailed 
information about GAs behaviour and implementation can be found in, for instance, Mitchell 
(1996) or Michalewicz (1996 ). However, it is important to recall that when GAs are used, a 
particular codification is needed to represent the parameter set of the problem to be solved. 
Different possible solutions i.e. distinct parameter combinations are represented in the bit 
string individuals of the GA. Most work with GAs is focussed on fixed-length character 
strings although there is a growing field of evolutionary computation where this restriction 
does not hold (Michalewicz, 1996). Regarding to binary and fixed-length codification, one of 
the first and simplest GAs (Goldberg, 1989) is known as Simple Genetic Algorithm (SGA). In 
fact SGA represents the basis for most applications of GAs (Mitchell, 1996). In SGA-based 
GAs three main basic ideas are present: 
1) The offspring number of an individual depends directly on the fitness value (the objective 
function value) of such individual. The higher the fitness the larger the offspring number of 
the individual. 
2) Population size is usually held constant and does not depend on the average fitness of 
the population. Nevertheless, the effect of different population sizes has been studied and 
used to improve the search with GAs (see chapter 4 of Michalewicz, 1996 and references 
therein).  
3) Points one and two are directly related to the mode of selection used in GAs. Thus, the 
selection operator allows for a probabilistic mechanism to maintain individuals as parents of 
future progeny despite possessing relatively poorer objective values (soft selection) or, on 
the contrary, to deterministically retain just the best available individuals to generate future 
progeny (hard selection). In any case, individuals will be selected at each generation after 
evaluation of their objective function value with respect to the current population average.  
 The concepts of hard and soft selection are somewhat different in classical population 
biology. Basically they refer to selection with respect to population average (soft selection) 
or to an absolute value (hard selection) that does not need to be present in the population 
at that time. The latter is related to selection in heterogeneous environments (Hartl and 
Clark, 1989). The main difference between the biological soft and hard selection concepts is 
the effect that hard selection has on population size. In the new GA presented in this work, 
the selection scheme is hard in the sense of population biology. So, to avoid confusions this 
kind of selection will be called absolute selection.  
 GAs have been applied to fields as diverse as engineering, economics and biology 
(Mitchell, 1996). Notwithstanding that, there is almost one different GA for each particular 
problem, but there are some problems that are typically difficult for them. Among such 
problems, epistasis, i.e. deviation of independence effect of each bit onto the individual 
fitness value, has been identified as one cause of difficulty for GAs (Naudts and Kallel, 
1998; Kumar, 2000). Different strategies have been suggested and used to avoid one fatal 
epistasis consequence: the search stops at a local population optimum unable to reach the 
global one (Kumar, 2000 and references therein). One of these strategies is the 
representational approach, which substitutes the simplest, but epistatic, codification by a 
more complex non-epistatic representation easier for the GA to solve (Kumar, 2000). 
However, an inconvenient of this and other approaches is that they imply more complex 
algorithms and hence specific codification for particular problems. 
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 In this study a new genetic algorithm (Genetic Algorithm Surviving Probability: 
GASP) which just differs at the three basic points mentioned above, is defined. It will be 
shown how can GASP solve high epistatic problems that SGA can not. Another advantage of 
GASP is that it is also a flexible algorithm, via two new parameters, R (maximum offspring 
number with which one individual contribute to the next generation) and K (an a priori 
defined absolute value to compare with each individual fitness), different selection schemes 
(resembling in some sense soft and hard selection in GA theory) can be implemented with 
the same algorithm.  
 
MATERIALS AND METHODS 
Analysis of population dynamics 
A schema is a particular pattern of a bit subset, e.g. for a 4 bit string ##10 is an order 2 
schema (two defined bits "1" and "0") and length 1 (distance between outermost defined 
bits) where # represents wildcards ("don't cares"). A well-known theorem in GA theory is 
the Schema Theorem (Holland, 1975; Goldberg, 1989) which describes the growth of a 
schema from one generation to the next. The Schema Theorem is often interpreted as 
implying that short (minimise the recombination effect), low-order (minimise the mutation 
effect) schemata whose average fitness remain above the population mean will increase 
their frequencies at each generation. 
 Regarding GASP, I will give the condition for any particular schema to increase its 
frequency through generations. Thus, a theorem analogous to the Schema Theorem is 
obtained for GASP. Furthermore, since population size is variable in GASP, population 
extinction could occur. The sufficient condition for a population not to become extinct will 
also be given. 
Comparing GASP and SGA performance 
To compare GASP and SGA performances, three examples with different epistatic values (no 
epistasis, high and intermediate) were studied, using the epistasis variance as total 
epistasis measure (Davidor, 1991). 
Example 1. A simple function. 
Given f(x) = xsin(10Πx) + 1.0, find x from interval [-1,2] so that maximise the function. 
This problem appears in Michalewicz (1996) as a 22-bit one and is just a simple example to 
compare SGA and GASP. The epistasis variance of this example is 0.  
Example 2. “Needle in a haystack”. 
 The so-called “needle in a haystack” (NIAH) are problems of finding particular values. 
Thus, a bit string will have fitness 1 if coincides with one of the searched values and fitness 
0 otherwise. Such functions are known as GA-hard NIAH-like functions for which the only 
efficient algorithm seems to be enumerative search (Kumar, 2000). Consider for instance an 
8-bit string and the problem of finding the strings with decimal value 5 or 122. These are 
two complementary binary strings and this problem is expected to have maximal epistasis 
variance (Naudts et al., 1997). Specifically, the total measured epistasis variance of this 
example is 0.99. 
Example 3. A biological model. 
Consider a stochastic simulation model for several populations of organisms of a single 
species in which different genetic and ecological parameters can be set. Allow such 
populations to be interconnected by migration. Consider that one of this populations 
undergoes some kind of pollution effect that we can simulate in different ways (model 
details in Carvajal-Rodríguez et al, 2003). Assume we are interested in investigating 
parameter combinations for this model to produce extinction of the polluted population. In 
this case, the aim is to find the genetic and ecological scenario (16 possible combinations) 
and the type of pollution or human impact effect (5 different kinds plus 10 pair 
combinations plus uncontaminated case given a total of 16 possible values) in which 
extinction of the affected population occurs. The total variance epistasis of this 8-bit 
example with the particular codification used (not shown, available as supplementary 
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information) is 0.66. With respect to this example, a research on more complex and 
exhaustive parameter space exploration is in progress. 
Measures of performance 
The main measure of performance was the population average fitness (range 0-1). In all 
examples the algorithm will stop after a fixed number of generations (150 generations for 
examples 1 and 2, 10 generations for example 3). Population fitness was recorded in the 
last generation, or, in the case of examples 2 and 3, if population average fitness reaches a 
given relative value (1.0 for example 2, 0.95 for example 3) the current generation is 
recorded and the iteration ends.  

In example 1, the measures of performance, were the best value obtained over 
generations and the generation number in which occurs. In examples 2 and 3 performance 
measures were the obtained frequency of average fitness that reached the optimum and the 
average generation number at which it is reached in 50 replicates for a given simulation.  

In examples 2 and 3 (with replicates), the criterion of convergence quality (Naudts 
and Kallel, 1998) was used to classify an algorithm according to its "ability" to solve a given 
problem. This criterion depends basically on the independence or dependence of the 
algorithm capability to solve the problem with respect to the choice of the randomly 
sampled initial population. Accordingly to this criterion, a GA can be recorded as class-1 (the 
algorithm always achieves the solution in all the replicates and spends almost the same 
generation number each time), classs-2 (the algorithm always achieves the solution in all 
the replicates but variance in generation number is high), class-3 (the algorithm only 
sometimes achieves the solution) or class-4 (the algorithm never reaches the solution). 
 
Algorithm 
The algorithm used in GASP can be described in a few steps: 
1.- Generate a random population of size N. 
2.- Select a random pair of parents from the population.  
3.- Obtain one son by recombination from each pair of parents. Add one more attempt to 
the particular counter of one progenitor. 
4.- Evaluate the fitness of each son. The fitness is obtained dividing the objective function 
value by K, which is the maximum, or a reasonable supreme, of the objective function. A 
son will survive if its fitness value is higher than a number randomly generated from an 
uniform between 0 and 1. In this way, the fitness value is equivalent to surviving 
probability. 
5.- Repeat step 2 until the maximum population size is reached or all parents have spent 
their fixed number of attempts (R). 
6.- The new population substitutes the old one. 
7.- Mutate and iterate using this new population. 
 
Implementation 
The particular implementations of GASP and SGA were in C and the code is freely available 
upon request. Compilation was made with Linux gcc and the program was run in an Intel 
Xeon with 2 GHz.  
 GASP and SGA were run for a set of recombination frequencies {0.0, 0.1, 0.2, 0.3, 
0.4, 0.5} and mutation rates {10-3, 10-2, 5×10-2, 10-1} in all cases except for SGA in 
example 1 in which a previously published result was used (Michalewicz, 1996). 
 SGA was implemented with roulette wheel selection which is a soft selection method 
(Mitchell, 1996). For GASP, the parameter R was maintained constant (R = 2) in all cases. 
Parameter K was the maximum for examples 2 and 3 and a supreme for example 1. The 
initial population size was 16 for the 8 bit examples and 50 for the 22 bit examples 
(example 2 was run for 8 and 22 bit string). In every case initial size was considered as the 
maximum population size. The recombination operator is implemented as parameterised 
uniform crossover (Spears and DeJong, 1991) in which an exchange happens at each bit 
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position with probability p belonging to the recombination frequency set given above. This 
implementation has the advantage of no positional bias (any schemas contained at different 
positions in the parents can be recombined in the offspring) and it is commonly used in 
recent GA applications (Mitchell, 1996). SGA and GASP were implemented with 
parameterised uniform crossover except for SGA in example 1 in which a previously 
published result was used (Michalewicz, 1996). 
 
RESULTS 
Schema theorem and population dynamics for GASP 
The Schema Theorem (see System and Methods) does not hold for GASP because individual 
fitness is not compared with current population average. For GASP, the probability for a 
schema σ to increase its number m in the population follows 
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where R is the maximum offspring number with which one individual contribute to the next 
generation, φi,h(σ,t) is the value of the objective function (absolute fitness) of son h of the 
particular individual realisation σi of schema σ, and K is the maximum or a supreme of the 
objective function. Thus, φi,h(σ,t) / K will be the surviving probability (i.e. the fitness) of that 
son. P is an inferior bound of the probability of the schema to be not disrupted by 
recombination and/or mutation. 
Equation (1) can also be expressed as 
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Thus, φ(σ,t) is the mean absolute fitness averaged over the m copies of σ in generation t. 
Each individual copy φi(σ,t) is evaluated via the averaged fitness of its expected offspring. 
As before, R is the maximum offspring number with which one individual contribute to the 
next generation and K is the maximum or a supreme of the objective function. Equation (2) 
implies that if a schema σ is short and of low order, its frequency m will increase if 
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i.e. if the average relative fitness of the schema is higher than 1/R. Therefore, equation (2) 
is GASP analogous to the Schema Theorem. Note that if R = 1 only schemata with average 
value of K (fitness of 1) can survive in the population. If R = 2 only schemata with average 
fitness higher than ½ will increase their frequencies.  
 Regarding population size, the expected population size at t + 1 for GASP will be the 
total number of expected surviving offspring, that is: 
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So, to at least maintain initial population size  
)0())1(( NtNE ≥+  (5) 

must hold and a sufficient condition for the population not to be extinct is obtained just 
substituting (4) into (5)  and changing N(0) by N(t). Condition (5) becomes 
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where 
K

φ
 is the expected offspring mean fitness of the population i.e. the average over all 

N(t) parents of the averaged fitness of each parent’s expected surviving offspring.  
 Equation (6) stands for the condition of no population extinction. This condition and 
equation (4) reflect a selection type in which selection affects population size. I call this 
selection type  absolute selection. If the expected population offspring mean fitness at the 
new population (note this fitness depends indirectly on parental fitness) is lower than 1 / R, 
population size will decrease and eventually the population will become extinct. At this 
point, GASP will randomly resample new N(0) individuals and iteration will continue. Such 
extinction behaviour will help avoiding both the slowness and eventual fall in a local 
optimum that can occur in SGA. 
 In the above analysis it has been assumed that population could grow exponentially 
(whenever R > 1). In practice, to avoid an eventual "oversize" in population number a limit 
to the maximum population size is established. It seems rational to take as this limit the 
initial population size (as I did) or twice the initial population size, nevertheless, other 
choices could be considered. The effect of this restriction in the analysis is simply that the R 
value (e.g. in the case of R = 2) is not in fact 2 but in average lower than 2 and higher than 
1. Thus, conditions (3) and (6) become stronger because the value at the right part of the 
equations is higher. Thus, the intensity of the selection scheme is higher if the population 
size is limited. 
Performance under example 1: a simple function 
Find x from interval [-1,2] so that maximise f(x) = xsin(10Πx) + 1.0. The published result 
refers to a run of a SGA with recombination frequency of 0.25 and mutation rate 10-2. The 
best solution obtained after running 150 generations was recorded at generation 145 and 
was f(x) = 2.850227292 which corresponds to x = 1.850773 (Michalewicz, 1996 p. 22).  

For GASP, I used a K value of 3 because f(x) = 3 is an obvious supreme of the 
objective function. Thus, 1 replicate was run during 150 generations for all the 24 
combinations of the parameter set. Although all solutions were very similar to those found 
for SGA, all were faster and most (17 of 24 cases) better. For the 17 better-valued cases 
the average was 2.850272649 ± 0.000003 and for the 7 worse 2.756673268 ±  0.16. The 
average number of generations to reach the best solution was 79 ± 33 in the 17 better-
valued cases and 44 ± 57 in the 7 worse ones. The best case was recorded at generation 8 
with recombination frequency 0.4 and mutation rate  10-3. The worst case was recorded at 
generation 1 with recombination frequency 0.2 and mutation rate  10-3 (the output for the 
whole parameter set is available as supplementary information). 
Performance under example 2: "needle in a haystack" 
In this example, the objective function will have a fitness value of 1 if decimal value of an 
individual is 5 or 122 and 0 otherwise. The same example was further considered with a 22 
bit string. Note that in this case there are only two "good" solutions in a total of 4,194,304 
possible.  

In Figure 1 the frequency of replicates with population average fitness equal to 
optimum (optimum for this problem is 1.0) is shown for SGA and GASP for the 8-bit 
parameter set. For the whole parameter set, the GASP algorithm behaved much better than 
SGA. All replicates achieved the optimum value with GASP while only a minority (2-12%) of 
replicates did so with SGA. For example 2 with 22 bits, SGA never finds the solution, but 
GASP still achieves the solution in 6 cases of the whole parameter combination set. The 
percentage of replicates achieving optimum average in these 6 cases is 2-4% and all of 
them belong to parameter combinations with high recombination frequency and/or high 
mutation rate (not shown, available as supplementary information). 
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Figure 1. Frequency of replicates in example 2 for which the population average fitness is 1 
(optimum) for the different recombination and mutation rate sets. F. Opt: Optima 
frequencies. F. Rec: Recombination frequency.From the frequencies presented in Figure 1 
the algorithms could be classified by means of the quality convergence criterion (see 
System and Methods). The classification of both SGA and GASP for the whole parameter set 
is presented in Table 1.  
 
Table 1. Classification of examples 2 and 3 following convergence quality criterion. The 
asterisk represents the whole range of the parameter set. The cases not shown were of 
class-4 both for SGA and GASP. 
Example Mutation  rate (µ) Recombination frequency Algorithm Class 

2 (8 bits) * * GASP 1,2 

2 (8 bits) < 10-1 * SGA 3 

2 (8 bits)  10-1 * SGA 4 

2 (22 bits) 10-2 0.0, 0.5 GASP 3 

2 (22 bits) 5×10-2 0.3, 0.5 GASP 3 

2 (22 bits) 10-1 0.3, 0.4 GASP 3 

2 (22 bits) * * SGA 4 

3 * * GASP 1 

3 < 10-1 * SGA 3 

3  10-1 * SGA 4 
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 For SGA with mutation rate of 10-3 or 10-2 the example can be classified as class-3 
because there are strong dependence on the initial choice of population for the algorithm to 
find the solution. In fact, with a mutation rate of 10-3 only in less than 2% of replicates the 
solution is found for different recombination frequencies. With a mutation rate of 10-2 there 
are two cases (recombination frequencies 0.3 and 0.4) with 10% and 12% of replicates that 
achieved the optimum. When mutation rate is 5×10-2 or 10-1 the example is of class-4, that 
is, the algorithm does not find the solution in any case. For GASP, the situation is very 
different since the solution is always found independently of the initial population choice. 
Thus, the example is of class-1 or -2 for all combinations of parameter values assayed. The 
difference between class-1 and -2 refers to the variance in generation number needed to 
find solution, small in class-1, large in class-2. Since the average generation number for all 
replicates and cases was 5.6 ± 1, it seems that example 2 can be considered of class-1 for 
GASP. With SGA, the same average was 147.4 ± 3 (note that many cases did not find the 
solution). Furthermore, example 2 with 22 bits is of class-4 (no solution found) for SGA and 
of class-3 for GASP (see Table 1). In the latter, the average generation number for all 
replicates and cases was 149.5 ± 1.  
Performance under example 3: A biological model 
In this example, ecological and demographic conditions in which extinction of a biological 
population takes place are searched (see System and Methods). The objective function for 
this example is obtained as the maximum biological population size allowed (50) minus the 
current population size at each generation. Thus, an individual solution with a biological 
population size of N = 50 has an objective function value of 0 and if N = 0 (extinction) the 
value is 50. The K value for the GASP algorithm will be the maximum, i.e. K = 50. 
Consequently, an individual with N = 0 will have a fitness of 1 ((50- 0) / 50) and an 
individual with N = 50 will have a fitness of 0 ((50 - 50) / 50). 
 

In Figure 2 the frequency of replicates with average population fitness higher than 
0.95 is given for SGA and GASP for the 8-bit parameter set. For the whole parameter set 
the GASP algorithm behaved much better than SGA. All replicates achieved the optimum 
value with GASP while only a minority of replicates did so with SGA.  
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Figure 2. Frequency of replicates in example 3 for which the population average fitness is 
higher than 0.95 for the different recombination and mutation rate sets. F. Opt: Optima 
frequencies. F. Rec: Recombination frequency. 
 
From the frequencies presented in Figure 2 we can again classify the algorithms by means 
of the quality convergence criterion (see System and Methods). The classification of both 
SGA and GASP for the whole parameter set is presented in Table 1. For SGA we see that if 
mutation rate is less than 10-1, the example is classified as class-3, that is, there is an initial 
sample effect although the average optimum is reached in 10-20% of replicates. The same 
example becomes of class-4, i.e. no solution is found, when mutation rate is as high as 10-1. 
The number of generations for SGA to reach the solution was 9 or 10 (not shown, available 
as supplementary information). In regard to GASP once again this is a class-1 example for 
the whole parameter set, because the optimum was reached for all replicates in 1 or 2 
generations (available as supplementary information). 

Example 3 has multiple optima solutions and it could be of interest the ability of the 
algorithm to find more than one optimal solution. To compare how algorithms perform for 
the number of different optima solutions found, we just run 1 replicate for both algorithms 
and the whole parameter set. The average number of optima solutions for the whole 
parameter combination were 3.46 ± 1.7 for GASP and 1.79 ± 2.2 for SGA. The average 
number of generations spent to find the solutions were 1.08 ± 0.28 for GASP and 9.92 ± 
0.41 for SGA. That is, GASP found more solutions than SGA and did it faster. 
 
DISCUSSION 
Since the theory of genetic algorithms was founded by the pioneer work of Holland (1975) 
there has been multiple variants on its original formulation. These variants concern to the 
applied selection scheme, population size, the genetic operators, the codification system 
and so on. Nevertheless, in all of the variants individual selection is referred to current 
population average fitness and population size is held constant or, at least, is not affected 
by the selection pressure. 
 Therefore, between GASP and SGA two fundamental differences are evident: 
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1) An absolute selection mode is applied in GASP in which individuals are evaluated with 
respect to an absolute value rather than to the current population average fitness. 
2) As a consequence of the former, in GASP the selection pressure affects population size 
and the population can undergo extinction. 
 This two points are the consequence of the introduction of two new parameters, 
namely, R (maximum offspring number with which one individual contribute to the next 
generation) and K (an a priori defined absolute value to compare with each individual 
fitness). If R is high, selection intensity diminishes its effect and if K is high (respect to 
current population values or indeed besides the maximum) selection intensity is increased 
allowing survival of only the best-fit individuals. However, it is important to note that in no 
case selection becomes deterministic as in elitism or other classical hard selection schemas 
of GA theory. Because of this, the absolute selection scheme, depending on the R and K 
values, allows to survive individuals despite possessing relatively poorer objective values or, 
on the contrary, only the best ones will have opportunity to survive and contribute to the 
next generation. Nevertheless, in the implementation performed here, GASP permits that 
the search of a solution can occur at two different levels: First, via the selection plus 
mutation and recombination operators as in other GAs. Second, if in successive generations 
the fitness in the population can not maintain the population size, extinction could happen 
and then, resampling a new population will continue the search.  
 It is also important to note that the variable population size allows GASP to work 
quickly because implies shorter computation times. Interestingly, a lower population size 
will occur if the average fitness is low i.e. individuals at population are of less interest. An 
extreme case of extinction behaviour appears in the so-called needle in a haystack (NIAH) 
problems (Kumar, 2000), as in example 2 above, in which populations will become 
successively extinct until the "needle" is found. Here the above mentioned second level of 
search becomes more important. 
 All the examples presented demonstrate the efficiency of GASP. In examples 2 and 3 
the maximum of the objective function was known. In example 1 a reasonable supreme 
could be guessed. The interplay between selection intensity (via the K value) and population 
size (via R and maximum population size allowed) allows the finding of optimum in a quick 
and efficient way. 
 It is worth mentioning that in a biological context, as in population biology and 
conservation genetic models, the value to find it is usually known and one wants to 
maximise (minimise) the population genetic variance or the population size, allele number, 
etc., until a given value is reached. On the contrary the conditions which drives population 
to the desired optimum e.g. the migration rate, initial population size, offspring number and 
so on, are unknown. In this kind of situations, GASP will work faster and better than more 
classical GAs. Other interesting field for the use of GASP is protein structure prediction. In 
this context the objective function is a complex one based on the idea of minimising some 
potential energy function. The problem stands both for finding an adequate function i.e. an 
adequate potential-energy model, (Mitchell 1996, refs. therein) and an adequate GA. This 
function has been proposed to be decomposed via a multiobjective approach and then a 
modified GA was used to solve protein structure (Day et al., 2001). It seems possible, given 
an energy model, to known the maximum or at least a supreme of such kind of functions 
and hence to apply a GASP-based algorithm and, in this way, take advantage of its 
properties. 
 
REFERENCES 

Carvajal-Rodríguez,A., Rolán-Álvarez,E. and Caballero,A. (2003). A simulation study comparing 
molecular and quantitative variation for detecting human-induced impacts on genetic 
diversity, Submitted to Genetical Research. 

Davidor,Y. (1991). Epistasis variance: a viewpoint on GA-hardness. In Rawlins, G. (ed.), 
Foundations of Genetic Algorithms, Morgan Kauffmann, Berlin, 23-25. 



 11 

Day,R.O., Zydallis,J.B., and Lamont,G.B. (2001). Solving the protein structure prediction problem 
through a multiobjective genetic algorithm. ICNN. 

Goldberg,D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, New York. 

Hartl,D.L. and Clark,A.G. (1989). Principles of Population Genetics. Sinauer Associates Inc, 
Sunderland Mass. 

Holland,J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press; 
(Second Edition: MIT Press 1982). 

Kumar,V. (2000). Tackling epistasis: a survey of measures and techniques, Technical report at the 
DCL University of Illinois, IL 61801, 1-12. 

Michalewicz,Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer 
Verlag. 

Mitchell,M. (1996). An Introduction to Genetic Algorithms, MIT Press, Massachusetts. 
Naudts,B. and Kallel,L. (1998). Some facts about so called GA-hardness measures, Technical 

report  at the CMAP Ecole Polytechnique, 379, 1-46. 
Naudts,B., Suys,D., and Verschoren,A. (1997). Epistasis as a basic concept in formal landscape 

analysis, In Back,T. (ed.), Proceedings of the 7th Internatonal Conference on Genetic 
Algorithms, Morgan Kaufmann. 

Spears,W.M., and DeJong,K.A. (1991). On the virtues of parameterized uniform crossover, In 
Belew,R.K. and Booker,L.B. (eds.) Proceedings of the Fourth Internatonal Conference on 
Genetic Algorithms, Morgan Kaufmann, La Jolla, CA, 230-236. 
 
Acknowledgements 
I thank A. Caballero, D. Posada and E. Rolán-Álvarez for their helpful comments on the 
manuscript. D. Posada also "baptize" GASP. I also thank J.L. Campos and J. J. Pasantes for 
English corrections. My research is funded by European Union (postdoc contract associated 
to grant EVK3-CT-2001-00048). 


