
Introduction to
programming in
Python for biologists

Introduction to programming in Python for biologists 2014

Course Presentation

Introduction to programming in Python for biologists 2014

Instructor

 Antonio Carvajal-Rodríguez.
 Office 23
 Department of Genetics. University of Vigo.

Contents

Programming in Python

Introduction to object oriented programming

Introduction to programming in Python for biologists 2014

Evaluation

Class participation: 10%

Troubleshooting and programming exercises: 70%

Final programming exercise: 20%

Introduction to programming in Python for biologists 2014

Introduction

• Initial settings
• Python: interactive vs. file mode
• First programming concepts:

program & variables
code blocks: indentation
data types: immutable vs. mutable
built-in functions: print, len
comparison and logical operators
decisions: the if statement

Introduction to programming in Python for biologists 2014

• Initial settings

biosdev@biosdev~VirtualBox:~$

biosdev@biosdev~VirtualBox:~$ nano .bash_aliases

export PATH=“$PATH:${HOME}/ProgBioinf”

biosdev@biosdev~VirtualBox:~$ (close and open the terminal) echo $PATH

biosdev@biosdev~VirtualBox:~$ cd ProgBioinfs
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $

Introduction to programming in Python for biologists 2014

Introduction

• Python: interactive vs file mode

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ python

Python 2.7.6 (default, Mar 22 2014, 22:59:38)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information

>>>
>>>help()
Help> keywords
Help> quit
>>>
>>> print(“programming for bioinformatics”)
>>> print(“programming\nfor\nbioinformatics”)
>>> quit()
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $

Introduction to programming in Python for biologists 2014

Introduction

• Python: interactive vs file mode

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ subl first.py (or gedit first.py)
#!/usr/bin/env python

DNASeq='GATACA'

print("Sequence: %s" %DNASeq)
print("Sequence:" + DNASeq)

text="Sequence: " + DNASeq
print(text)

end of the file

Introduction to programming in Python for biologists 2014

Introduction

• Python: interactive vs file mode

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ first.py

Sequence: GATACA
Sequence:GATACA
Sequence: GATACA

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $

Introduction to programming in Python for biologists 2014

Introduction

• Python: interactive vs file mode

>>>help(len)
Help on built-in function len in module __builtin__:

len(...)
len(object) -> integer

Return the number of items of a sequence or mapping.
>>>
>>> text=“gatac a”
>>>len(text)
7
>>>

Introduction to programming in Python for biologists 2014

Introduction

• Python: interactive vs file mode

>>> if len(text)>0:
... print(“data")
... else:
... print("none")
...
data
>>> text=“”
>>> len(text)
0
>>>dir(text)
>>>help(text.count)
>>>text=‘GATACA’
>>>text.count(‘A’)
3

Introduction to programming in Python for biologists 2014

Introduction

Problem 1
Exercise 1.1: Develop a program called DNA_calc.py for computing the melting
temperature MT of a DNA sequence. Use as example the sequence contained in
sequence.txt (you can copy and paste it into your code). However, the program
must work for sequences of any length. The formula for MT is

MT = 4*(C+G) + 2*(A+T) for short sequences (< 14 nt) and
MT = 64.9 + 41*(C+G-16.4)/SeqLength for larger sequences.

Hints:
Use string method .count()
Use print to show the result

Introduction to programming in Python for biologists 2014

• More programming concepts in Python:

input from the user: raw_input
string formatting with the print function

• The string data type

.upper()
.replace()
.find()
.split()

Introduction to programming in Python for biologists 2014

Problem 1

• User input

>>> text=raw_input(“Introduce the DNA sequence: ")
Introduce the DNA sequence: aagt
>>> print(text)
aagt
>>> print(text.upper())
AAGT
>>> help(“”.find)
>>> help(“”.replace)
>>> help(“”.split)

Introduction to programming in Python for biologists 2014

Problem 1

• String formatting

>>> nA=4; nC=7
>>> print(“There are %d A and %d C bases.” % (nA, nC))
There are 4 A and 7 C bases.
>>>
>>> print(“The ratio A/(A+C) is %.2f of %d A+C bases.” %(nA/(nA+nC), nA+nC))
The ratio A/(A+C) is 0.36 of 11 A+C bases.
>>>
>>> print(“The ratio A/C is %f.” %(nA/nC))
The ratio A/C is 0.571429.

Introduction to programming in Python for biologists 2014

Problem 1

Exercise 1.2: Develop a program called complementary_dna.py for computing the
complement of a DNA sequence introduced from the keyboard.

Hints:
Use string method .replace()

Extra: Any non-nucleotide symbol must be complemented by an ‘x’, e.g. the
complement of GATAHA should be CTATxT

Introduction to programming in Python for biologists 2014

Problem 1

Exercise 1.3: Develop a program called RFL.py that given the motif GAATTC
compute the length of the two fragments produced after cutting a DNA sequence
at the position just before the motif. Use the same sequence of exercise 1.1.

Hints:
Use string method .find()

Extra: Allow user-defined motif and read the sequence from file.

Introduction to programming in Python for biologists 2014

Problem 1

• Loops and lists (and tuples)

• Modifying Python variables

• Other data types: dictionaries

• Comprehensions

• File IO
read input file
Parse content
write output file

Introduction to programming in Python for biologists 2014

Problem 2

• Lists

>>> dir(list)
>>> help(list.append)
>>> L=[]
>>> L.append(0)
>>> print(L)
[0]
>>> L.append(1)
>>> print(L)
[0, 1]
>>>

Introduction to programming in Python for biologists 2014

Problem 2

• Loops

>>> slist=['G','A','T','A','C','A']
>>> print slist[0]
G
>>> print slist[1]
A
>>> for nucleotide in slist:
... print(nucleotide)
...
G
A
T
A
C
A

Introduction to programming in Python for biologists 2014

Problem 2

Exercise 2.1: Develop a program called parseseq.py that converts from a string in
Phylip format:

2 10
Pop1_1 GTTATACCTC
Pop1_2 CCTATACCTC

to another string in the Fasta format:
>Pop1_1
GTTATACCTC
>Pop1_2
CCTATACCTC

Hints
Use .split() method

Introduction to programming in Python for biologists 2014

Problem 2

• Modifying Python variables

>>> seq='GATACA'
>>> seq2=seq
>>> print(seq+"\n"+seq2)
GATACA
GATACA
>>> seq="other"
>>> print(seq+"\n"+seq2)
other
GATACA
>>> seq*0+=‘A’ # what happens??

Introduction to programming in Python for biologists 2014

Problem 2

• Modifying Python variables

>>> slist=['G','A','T','A','C','A']
>>> slist2=slist
>>> print(str(slist)+"\n"+str(slist2))
['G', 'A', 'T', 'A', 'C', 'A']
['G', 'A', 'T', 'A', 'C', 'A']
>>> slist[0]='A'
>>> print(str(slist)+"\n"+str(slist2))
['A', 'A', 'T', 'A', 'C', 'A']
['A', 'A', 'T', 'A', 'C', 'A']
>>>

Introduction to programming in Python for biologists 2014

Problem 2

• Modifying Python variables

>>> slist3=slist[:] #but wait for problem 4.4 you could need copy.deepcopy()
>>> print(str(slist)+"\n"+str(slist3))
['A', 'A', 'T', 'A', 'C', 'A']
['A', 'A', 'T', 'A', 'C', 'A']
>>> slist[0]='G'
>>> print(str(slist)+"\n"+str(slist3))
['G', 'A', 'T', 'A', 'C', 'A']
['A', 'A', 'T', 'A', 'C', 'A']
>>>

Introduction to programming in Python for biologists 2014

Problem 2

• I/O

>>> help(open)
>>> file= open(“sequence.txt”, 'r')
>>> text= “”
>>>
>>> for line in file:
... text+=line
...
>> print(text)
ACTGATCGATTACGTATAGTAGAATTCTATCATACATATATATCGATGCGTTC
>>>file.close()
>>>file2 = open(“sequence2.txt", 'w')
>>> file2 .write(text)
>>>file2.close()

Introduction to programming in Python for biologists 2014

Problem 2

• Dictionaries

>>> codon=,‘A’: ‘GCT’, ‘C’:‘TGT’-
>>> print(codon*‘A’+)
GCT
>>>help(zip)
>>> list1=*‘A’, ‘C’+
>>> list2=*‘GCC’, ‘TGC’+
>>> codon=dict(zip(list1,list2))
>>> print(codon*‘A’+)
GCC

• Comprehensions
>>>list=range(1,11)
>>> squares= [numbers**2 for numbers in list]

Introduction to programming in Python for biologists 2014

Problem 2

Exercise 2.2: Develop a program called parsecodon.py that after reading the
input file AA.txt, generate a table of the kind

Id Aminoacid (codon)
A Alanine (GCT, GCC, GCA, GCG)

and write the table in a file called CodonTable.txt

Hints:
Use list and dictionary with the Id as key

Introduction to programming in Python for biologists 2014

Problem 2

• User-defined functions

• Command line arguments

• Handle errors

• Modules: urlib, random…

• Exercises

Introduction to programming in Python for biologists 2014

Problem 3

• User-defined functions

>>> def sum(x,y):
... return x+y
...
>>> print(sum(2,5))
7
>>>

Introduction to programming in Python for biologists 2014

Problem 3

• User-defined functions

>>> def getword(str_seq,sep,position):
... return seq.split(sep)[position-1]
...
>>> words=“programming for bioinformatics course”
>>> print(getword(words," ",3))
bioinformatics
>>> print(getword(words," ",1))
programming
>>> print(getword(words," ",4))
course
>>>

Introduction to programming in Python for biologists 2014

Problem 3

• User-defined functions

>>> numbers=“1,2,3,4,5,6,7,8,9,10”
>>> print(getword(numbers,",",3))
3
>>> print(getword(numbers,",",10))
10
>>>

Introduction to programming in Python for biologists 2014

Problem 3

• User-defined functions

>>> def sum(x,y,result):
... result=x+y
... print(result)
...
>>>r=0
>>>print(r)
0
>>> sum(4,3,r)
7
>>> print(r)
0
>>>

Introduction to programming in Python for biologists 2014

Problem 3

• User-defined functions

>>> def sum(x,y,result):
... result[0]=x+y
... print(result[0])
...
>>>r=[0]
>>> print(r[0])
0
>>> sum(4,3,r)
7
>>> print(r[0])
7
>>>

Introduction to programming in Python for biologists 2014

Problem 3

• Command line arguments

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ subl sum.py
#!/usr/bin/env python
import sys
sum=0
if len(sys.argv)>1:

list=sys.argv[1:]
for s in list:

sum+=int(s)
print(sum)

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ sum.py 1 3 4 7
15
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ sum.py
0

Introduction to programming in Python for biologists 2014

Problem 3

• Command line arguments

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ sum.py NOTNUMBERS

Traceback (most recent call last):
File "/home/biosdev/ProgBioinf/sum.py", line 7, in <module>

sum+=int(s)
ValueError: invalid literal for int() with base 10: 'NOTNUMBERS'

Introduction to programming in Python for biologists 2014

Problem 3

• Handle errors: try & except

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ subl sum2.py
#!/usr/bin/env python
import sys
sum=0
if len(sys.argv)>1:

try:
list=sys.argv[1:]
for s in list:

sum+=int(s)
print(sum)

except ValueError as e:
print(e.args[0])

end of file

Introduction to programming in Python for biologists 2014

Problem 3

• Handle errors: try & except

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ sum2.py 1 3 4 7
15
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ sum2.py NOTNUMBERS
invalid literal for int() with base 10: ‘NOTNUMBERS’

Introduction to programming in Python for biologists 2014

Problem 3

Exercise 3.1: Similarly as you already did in exercise 2.1 develop a parser between
Phylip and Fasta formats now using a function called PtoFparser that receives as
argument a string of sequences in Phylip format and returns another string with
the sequences in Fasta format. The main program that calls the function must
receive by console an argument indicating the name of the input file with the
sequences in Phylip format and would return the result in a new file with the
same name as the input one but with the extension .fas.

Introduction to programming in Python for biologists 2014

Problem 3

• Modules: urlib, random

Introduction to programming in Python for biologists 2014

Problem 3

• Modules: urlib

>>> import urllib
>>> NewUrl ="http://practicalcomputing.org/aminoacid.html"
>>> WebContent = urllib.urlopen(NewUrl)
>>> for Line in WebContent:
... print(Line.strip())
...

Introduction to programming in Python for biologists 2014

Problem 3

Exercise 3.2: Develop a program called molw.py that reads the content from the
url in the previous example and write it in a file called name.html where “name”
is any name passed as argument when calling the program. If no argument the
default name is “aa”. Thus if the call is

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ molw.phy

It should generate an output file aa.html but if we call

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ molw.phy Table

It generates an output file Table.html.

Introduction to programming in Python for biologists 2014

Problem 3

• Modules: random

>>> # rolling the dices
>>> import random
>>> NumofRolls =3
>>> NumofDices =5

>>> Rolls=[]
>>> Sides= (1,2,3,4,5,6)
>>> for X in range(NumofRolls):
... Resample=[random.choice(Sides) for Y in range(NumofDices)]

... Rolls.append(Resample)

...
>>>

Introduction to programming in Python for biologists 2014

Problem 4

Exercise 4.1: The example just given in the previous slide is a dice roller. A)
Identify the line of code producing the randomness and explain it. B) Develop a
program called DiceRoller.py that receives as argument the number of rolls,
make the plays and print the results.

Extra: Select the best hand given the following rank from highest to lowest: five
of a kind, four, full, three, two-pair, one-pair.

Introduction to programming in Python for biologists 2014

Problem 4

Exercise 4.2: Recall our previous exercise and consider a sample of N DNA
sequences. If instead of the number of sides and dices we just consider N, we
have a resampling with replacement method that can be used to perform a
technique called bootstrapping. Thus, change your program to receive as
argument the name of a sequence file in Phylip format and perform the
following tasks:

Introduction to programming in Python for biologists 2014

Problem 4

Exercise 4.2: Recall our previous exercise and consider a sample of N DNA
sequences. If instead of the number of sides and dices we just consider N, we
have a resampling with replacement method that can be used to perform a
technique called bootstrapping. Thus, change your program to receive as
argument the name of a sequence file in Phylip format and perform the
following tasks:

A) Read SeqPhylip.text file and use two lists to store separately the names and
the sequences. You must test that:

assert len(names)==50

assert len(names)==len(sequences)

Introduction to programming in Python for biologists 2014

Problem 4

Exercise 4.2: Recall our previous exercise and consider a sample of N DNA
sequences. If instead of the number of sides and dices we just consider N, we
have a resampling with replacement method that can be used to perform a
technique called bootstrapping. Thus, change your program to receive as
argument the name of a sequence file in Phylip format and perform the
following tasks:

B) From the total number of 50 sequences select sequences 6 and 7 and cut
these two sequences maintaining only the nucleotide positions between 2000
and 7000. Test:

assert Names[0][len(Names[0])-1]==str(6)
assert Names[1][len(Names[0])-1]==str(7)
assert len(Data[s]) == SeqEnd-SeqIni # for each sequence s

Introduction to programming in Python for biologists 2014

Problem 4

Exercise 4.2: Recall our previous exercise and consider a sample of N DNA
sequences. If instead of the number of sides and dices we just consider N, we
have a resampling with replacement method that can be used to perform a
technique called bootstrapping. Thus, change your program to receive as
argument the name of a sequence file in Phylip format and perform the
following tasks:

C) Resample the sequences 100 times by generating, each time, two new
sequences using the random.shuffle(s) method where s is a sequence.

Introduction to programming in Python for biologists 2014

Problem 4

Exercise 4.2: Recall our previous exercise and consider a sample of N DNA
sequences. If instead of the number of sides and dices we just consider N, we
have a resampling with replacement method that can be used to perform a
technique called bootstrapping. Thus, change your program to receive as
argument the name of a sequence file in Phylip format and perform the
following tasks:

D) Compute and print the mean and variance of the number of purines (A+G)
in the two original sequences and the mean and variance of the average
number of purines through the resamplings. Explain the result.

Introduction to programming in Python for biologists 2014

Problem 4

• Object oriented programming

• Objects and classes

attributes
methods
 initialization method
 docstrings

• User-defined modules

Introduction to programming in Python for biologists 2014

Problem 5

• Object oriented programming

Object: Any thing can be viewed as an object. From the computer science
point of view an object is a collection of data with an associated behavior.

Class: A kind of objects.

Example: If I say that my pet Missu is an object then the class of Missu is
Cats. The class Cats have a superclass called Animals so Missu belongs to
both. However Missu does not belong to the class Dogs.

Introduction to programming in Python for biologists 2014

Problem 5

• Object oriented programming

Object: Any thing can be viewed as an object. From the computer science
point of view an object is a collection of data with an associated behavior.

Class: A kind of objects.

Another Example: The alpha-amylase gene is an object belonging to the
Gene class.

Introduction to programming in Python for biologists 2014

Problem 5

• Class Gene

Attributes (public or private):

name
 locus
chromosome
sequence
taxon

Methods (public or private):

name

Introduction to programming in Python for biologists 2014

Problem 5

• Class Gene

If you create a class called Gene and upload the class to the internet
to be used by other programmers. Public means that the code of a
“client” (a programmer using your class) can access this attribute or
method. A private attribute means the opposite i.e. the code of a
client cannot access this attribute directly (may exists a specific
method to do so). Similarly for methods. A private method can only
be directly used when the original class is programmed .

Hint: You should never try to directly access the private attributes or
methods of an object from outside of its class definition.

Introduction to programming in Python for biologists 2014

Problem 5

• Class Gene
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ subl gene.py

#!/usr/bin/env python
“””This is docstring example in module gene.py from PFB course."""

class Gene(object):
def__init__(self, name=“”,locus=-1,chrom=-1,seq=“”,taxon=“”):

self.__name=name
self.locus=locus
self.__chromosome=chrom
self._sequence=seq
self.__taxon=taxon

@property # this is called a ‘decorator’ in the python world
def name(self):

return self.__name

Introduction to programming in Python for biologists 2014

Problem 5

• Class Gene
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ subl gene.py

…
@name.setter
def name(self, newname):

assert newname != “”
self.__name=newname

#end file

try:
if __name__ == "__main__“:

print("Use gene.py only as an imported module")

Introduction to programming in Python for biologists 2014

Problem 5

• Class Gene
biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ subl genomics.py

#!/usr/bin/env python
import gene
amy=gene.Gene("amy")
print(amy.name)
print(amy.locus)
print(amy.taxon) # ???

biosdev@biosdev~VirtualBox:~/ ProgBioinfs $ genomics.py

Introduction to programming in Python for biologists 2014

Problem 5

Exercise 5.1: Develop a module called sequence.py that contains the class Gene
and the class Sequences. Gene is the same as before but with all attributes
being private. Sequences should has as private attributes name, sequence,
format and cursor plus the following public methods:

cursor: returns or set the current cursor value (use @)
name: returns the name of the sequence number cursor (from 1 to n)
sequence: returns the sequence with a given name.
sample_size: returns the number of sequences.
length: returns the length of the sequences if it is the same for all if not return -1.
purines: for a given sequence cursor returns a tuple with the number of A’s and G’s.
read: read a sequence file and store the corresponding information in the attributes.

Exercise 5.2:

Develop a program that imports the Sequences class and use it for reading the
file SeqPhylip.txt. Compute the mean and variance of purines in the sequences.

Introduction to programming in Python for biologists 2014

Problem 5

Bibliography

 Practical Computing for Biologists. Haddock & Dunn. Sinauer Associates, Inc.;
First edition (November 5, 2010).

 Python Programming for the Absolute Beginner, 3rd Edition. Michael
Dawson. Cengage Learning PTR; 3rd edition (January 1, 2010)

Introduction to programming in Python for biologists 2014

